India RMO 1991 Q1

·

, , ,

1. Problem


Let P be an interior point of a triangle ABC and AP, BP, CP meet the sides BC, CA, AB in D, E, F respectively. Show that

\displaystyle \frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC} \ \ \ \ \ (1)

2. Solution

Proof:

{\mathbf{[\Gamma]}} = area of figure {\mathbf{\Gamma}}

Since height from C to base is same for both {\Delta}AFC and {\Delta}BFC (proof in Lemma 1)

\displaystyle \frac{AF}{FB} = \frac{[AFC]}{[BFC]} \ \ \ \ \ (2)

Since height from P to base is same for both {\Delta}AFP and {\Delta}BFP

\displaystyle \frac{AF}{FB} = \frac{[AFP]}{[BFP]} \ \ \ \ \ (3)

from equation (2) and (3)

\displaystyle \frac{AF}{FB} = \frac{[AFC] - [AFP]}{[BFC] - [BFP]} = \frac{[APC]}{[BPC]} \ \ \ \ \ (4)

similarly if we apply same formulas for E point

\displaystyle \frac{AE}{EC} = \frac{[AEB]}{[CEB]} = \frac{[AEP]}{[CEP]}=\frac{[AEB] - [AEP]}{[BEC] - [CEP]} = \frac{[APB]}{[BPC]} \ \ \ \ \ (5)

Now, adding equation (4) and (5)

\displaystyle \frac{AF}{FB} + \frac{AE}{EC} = \frac{[APC]}{[BPC]} + \frac{[APB]}{[BPC]} + 1 -1

\displaystyle \frac{AF}{FB} + \frac{AE}{EC} = \frac{[APC]+[APB]+[BPC]}{[BPC]} -1

\displaystyle \frac{AF}{FB} + \frac{AE}{EC} = \frac{[ABC]}{[BPC]} - 1

\displaystyle \frac{AF}{FB} + \frac{AE}{EC} = \frac{AD}{PD} - 1

\displaystyle \frac{AF}{FB} + \frac{AE}{EC} = \frac{AD-PD}{PD}

\displaystyle \frac{AF}{FB} + \frac{AE}{EC} = \frac{AP}{PD}

In above proof we have used below equation, explanation can be found in Lemma 2 below,

\displaystyle \frac{[ABC]}{[BPC]} = \frac{AD}{PD} \ \ \ \ \ (6)

\Box

3. Extra Explanation

3.1. explanation equation (2)

Lemma 1 Let there be a point D on line BC of {\Delta} ABC, then

\displaystyle \frac{BD}{DC} = \frac{[ABD]}{[ADC]} \ \ \ \ \ (7)

Proof: Let there be AX {\perp} BC

now,

\displaystyle [ADC] = \frac{1}{2}*AX*DC

\displaystyle [ABD] = \frac{1}{2}*AX*BD

from above equations:

\displaystyle \frac{[ABD]}{[ADC]} = \frac{\frac{1}{2}*AX*BD}{\frac{1}{2}*AX*DC}

\displaystyle \frac{[ABD]}{[ADC]} = \frac{BD}{DC}

\Box

3.2. explanation equation (6)

Lemma 2 Let there be an interior point P in {\Delta} ABC. Draw AP which meets BC at point D, then

\displaystyle \frac{[ABC]}{[BPC]} = \frac{AD}{PD} \ \ \ \ \ (8)

Proof: Let there be AX {\perp} BC and PY {\perp} BC,

now,

\displaystyle [ABC] = \frac{1}{2}*AX*BC

\displaystyle [BPC] = \frac{1}{2}*PY*BC

from above equations:

\displaystyle \frac{[ABC]}{[BPC]} = \frac{\frac{1}{2}*AX*BC}{\frac{1}{2}*PY*BC}

\displaystyle \frac{[ABC]}{[BPC]} = \frac{AX}{PY}

Since,

{\angle}DAX = {\angle}DPY [{\because} PY {\parallel} AX],

{\angle}ADX = {\angle}PDY and,

{\angle}AXD = {\angle}PYD

we can say {\Delta}ADX {\sim} {\Delta}PDY, so

\displaystyle \frac{AX}{PY} = \frac{AD}{PD}

Hence,

\displaystyle \frac{[ABC]}{[BPC]} = \frac{AD}{PD}


\Box

4. Ceva’s Theorem

Theorem: The three lines containing the vertices A, B, and C of {\Delta}ABC and intersecting opposite sides at points D, E, and F, respectively, are concurrent if and only if

\displaystyle \frac{AF}{FB}*\frac{BD}{DC}*\frac{CE}{EA} = 1


Proof:

Part 1: say line AD, BE and CF are concurrent at point P then prove

\displaystyle \frac{AF}{FB}*\frac{BD}{DC}*\frac{CE}{EA} = 1

Proof: from Lemma 1,

\displaystyle \frac{BD}{DC} = \frac{[ABD]}{[ADC]}

similarly,

\displaystyle \frac{BD}{DC} = \frac{[PBD]}{[PDC]}

Therefore,

\displaystyle \frac{BD}{DC} = \frac{[ABD]-[PBD]}{[ADC]-[PDC]}

(Replace – sign with + sign if A and P are on opposite side of BC)

\displaystyle \frac{BD}{DC} = \frac{[APB]}{[APC]}

similarly,

\displaystyle \frac{CE}{EA} = \frac{[BPC]}{[APB]}

\displaystyle \frac{AF}{FB} = \frac{[APC]}{[BPC]}

Multiplying 3 equations,

\displaystyle \frac{AF}{FB}*\frac{BD}{DC}*\frac{CE}{EA} =\frac{[APC]}{[BPC]} *\frac{[APB]}{[APC]}* \frac{[BPC]}{[APB]} = 1

\Box

Part 2: Now say we are given, The three lines containing the vertices A, B, and C of {\Delta}ABC and intersecting opposite sides at points D, E, and F such that,

\displaystyle \frac{AF}{FB}*\frac{BD}{DC}*\frac{CE}{EA} = 1

then prove AD, CF and BE are concurrent.

Proof:

We are given,

\displaystyle \frac{AF}{FB}*\frac{BD}{DC}*\frac{CE}{EA} = 1

Now say, AD and BE meet at point P and CP meets AB at F’ which is different from F, Then AD, BE and CF’ are concurrent. And from previous proof

\displaystyle \frac{AF'}{F'B}*\frac{BD}{DC}*\frac{CE}{EA} = 1

from our hypothesis

\displaystyle \frac{AF'}{F'B} = \frac{AF}{FB}

But only one point can cut a line segment in given ratio so F = F’, so CF, CE and AD are concurrent \Box

\Box

Leave a comment

Instagram

Follow Instagram account as well

Instagram