Indian National Mathematic Olympiad 2017 Q2

·

, ,

1. Problem


Suppose {n >= 0} is an integer and all the roots of {x^3 + \alpha x + 4 - (2 * 2016^n) = 0} are integers. Find all possible values of {\alpha}

2. Solution

Let’s say a,b,c are integers and roots of

\displaystyle x^3 + \alpha x + 4 - (2 * 2016^n) = 0 \ \ \ \ \ (1)

We can write this polynomial as

\displaystyle (x-a)(x-b)(x-c) = 0

\displaystyle x^3- (a+b+c)x^2 + (ab+bc+ca)x -abc =0 \ \ \ \ \ (2)

Comparing (1) and (2)

\displaystyle a+b+c =0 \ \ \ \ \ (3)

\displaystyle ab+bc+ca = \alpha \ \ \ \ \ (4)

\displaystyle -abc = 4 - (2 * 2016^n) \ \ \ \ \ (5)

Using (3) and (5)

\displaystyle ab(a+b) = 4 - (2 * 2016^n) \ \ \ \ \ (6)

Let’s say {n=0},

from (6),

\displaystyle ab(a+b) = 2

since a and b are integer values can only range from -2 and 2. We can easily eliminate 0 as it is not the factor of 2.

ab(a+b) b
-2-112
a-2-16-620
-1-6-20-2
12026
20-2616

From above table, we can see roots which satisfies equation 6 are 1,1,-2. Using these roots in (4)

\displaystyle \alpha = 1 -2 -2 = -3

Now, let’s say {n > 0}, from (6),

\displaystyle ab(a+b) \equiv 4 \equiv 1~(mod~ 3)

So, a and b cannot be divisible by 3

ab(a+b)b
12
a120
201

So,

\displaystyle a \equiv b \equiv 2 ~(mod~3) \ \ \ \ \ (7)

from (6),

\displaystyle ab(a+b) \equiv 4~ (mod ~9)

and from (7)

\displaystyle a \equiv 2,~5~ or~ 8 ~(mod ~ 9)

\displaystyle b \equiv 2,~5~ or~ 8 ~(mod ~ 9)

ab(a+b)b
258
a2777
5777
8777

None of the above combination will satisfy {ab(a+b) \equiv 4 ~(mod ~9) }.

So, for {n > 0} there is no solution for which equation (1) has all integer roots.


So, the only solution for the equation is when {\mathbf{\alpha = -3}} and roots are 1,1,-2.

Leave a comment

Instagram

Follow Instagram account as well

Instagram